Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.231
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608986

RESUMO

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.


Assuntos
Antineoplásicos , Núcleo Celular , Desoxirribonuclease I , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Desoxirribonuclease I/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Verde de Indocianina/química , Microambiente Tumoral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus
2.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182795

RESUMO

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Assuntos
Sistemas CRISPR-Cas , Hiperoxalúria Primária , Humanos , Animais , Camundongos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia
3.
Plant J ; 117(2): 573-589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897092

RESUMO

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Assuntos
Cromatina , Saccharum , Succinatos , Saccharum/genética , Saccharum/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Melhoramento Vegetal , Genômica , Poliploidia
4.
Chem Biol Interact ; 386: 110772, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898285

RESUMO

Having continued our recent study on the synthesis and DNase I inhibition of several monosquaramides, two new chloro-substituted pyridine squaramates were synthesized and their structure was identified by X-ray. Their inhibitory properties towards deoxyribonuclease I (DNase I) and xanthine oxidase (XO) were evaluated in vitro. 3-(((6-Chloropyridin-3-yl)methyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (compound 3a) inhibited DNase I with an IC50 value of 43.82 ± 6.51 µM, thus standing out as one of the most potent small organic DNase I inhibitors tested to date. No cytotoxicity to human tumor cell lines (HL-60, MDA-MB-231 and MCF-7) was observed for the tested compounds. In order to investigate the drug-likeness of the squaramates, the ADME profile and pharmacokinetic properties were evaluated. Molecular docking was performed to reveal the binding mode of the studied compounds on DNase I.


Assuntos
Desoxirribonuclease I , Piridinas , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Piridinas/farmacologia , Desoxirribonuclease I/metabolismo , Estrutura Molecular , Inibidores Enzimáticos/química
5.
Nat Methods ; 20(7): 1029-1036, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37231266

RESUMO

As a miniature RNA-guided endonuclease, IscB is presumed to be the ancestor of Cas9 and to share similar functions. IscB is less than half the size of Cas9 and thus more suitable for in vivo delivery. However, the poor editing efficiency of IscB in eukaryotic cells limits its in vivo applications. Here we describe the engineering of OgeuIscB and its corresponding ωRNA to develop an IscB system that is highly efficient in mammalian systems, named enIscB. By fusing enIscB with T5 exonuclease (T5E), we found enIscB-T5E exhibited comparable targeting efficiency to SpG Cas9 while showing reduced chromosome translocation effects in human cells. Furthermore, by fusing cytosine or adenosine deaminase with enIscB nickase, we generated miniature IscB-derived base editors (miBEs), exhibiting robust editing efficiency (up to 92%) to induce DNA base conversions. Overall, our work establishes enIscB-T5E and miBEs as versatile tools for genome editing.


Assuntos
Sistemas CRISPR-Cas , Desoxirribonuclease I , Animais , Humanos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Citosina , RNA/genética , Mamíferos/genética , Mamíferos/metabolismo
6.
Cell Commun Signal ; 21(1): 86, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127629

RESUMO

BACKGROUND: Inflammation-related predisposition to cancer plays an essential role in cancer progression and is associated with poor prognosis. A hypoxic microenvironment and neutrophil infiltration are commonly present in solid tumours, including gastric cancer (GC). Neutrophil extracellular traps (NETs) have also been demonstrated in the tumour immune microenvironment (TIME), but how NETs affect GC progression remains unknown. Here, we investigated the role of NET formation in the TIME and further explored the underlying mechanism of NETs in GC tumour growth. METHODS: Hypoxia-induced factor-1α (HIF-1α), citrulline histone 3 (citH3) and CD66b expression in tumour and adjacent nontumor tissue samples was evaluated by western blotting, immunofluorescence and immunohistochemical staining. The expression of neutrophil-attracting chemokines in GC cells and their hypoxic-CM was measured by qRT‒PCR and ELISA. Neutrophil migration under hypoxic conditions was evaluated by a Transwell assay. Pathway activation in neutrophils in a hypoxic microenvironment were analysed by western blotting. NET formation was measured in vitro by immunofluorescence staining. The protumour effect of NETs on GC cells was identified by Transwell, wound healing and cell proliferation assays. In vivo, an lipopolysaccharide (LPS)-induced NET model and subcutaneous tumour model were established in BALB/c nude mice to explore the mechanism of NETs in tumour growth. RESULTS: GC generates a hypoxic microenvironment that recruits neutrophils and induces NET formation. High mobility group box 1 (HMGB1) was translocated to the cytoplasm from the nucleus of GC cells in the hypoxic microenvironment and mediated the formation of NETs via the toll-like receptor 4 (TLR4)/p38 MAPK signalling pathway in neutrophils. HMGB1/TLR4/p38 MAPK pathway inhibition abrogated hypoxia-induced neutrophil activation and NET formation. NETs directly induced GC cell invasion and migration but not proliferation and accelerated the augmentation of GC growth by increasing angiogenesis. This rapid tumour growth was abolished by treatment with the NET inhibitor deoxyribonuclease I (DNase I) or a p38 MAPK signalling pathway inhibitor. CONCLUSIONS: Hypoxia triggers an inflammatory response and NET formation in the GC TIME to augment tumour growth. Targeting NETs with DNase I or HMGB1/TLR4/p38 MAPK pathway inhibitors is a potential therapeutic strategy to inhibit GC progression. Video Abstract.


Assuntos
Armadilhas Extracelulares , Proteína HMGB1 , Neoplasias Gástricas , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Proteína HMGB1/metabolismo , Receptor 4 Toll-Like/metabolismo , Neoplasias Gástricas/metabolismo , Camundongos Nus , Neutrófilos , Desoxirribonuclease I/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Microambiente Tumoral
7.
J Control Release ; 357: 620-629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061194

RESUMO

Neutrophil extracellular traps (NETs) are web-like chromatin structures that are coated with granule proteins and trap microorganisms. However, NETs can damage the host tissue, contribute to the development of autoimmunity and lead to other dysfunctional outcomes in noninfectious diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), diabetes, atherosclerosis, vasculitis, thrombosis, and cancer. As a potential therapeutic approach, targeted ablation of neutrophil extracellular traps is of utmost importance for the treatment of NET-associated diseases. Here, the specific interaction between CCDC25 and NETs was exploited to produce biomimetic CCDC25-overexpressing cell membrane hybrid liposomes capable of targeting NETs in NET-associated diseases. The hybrid liposomes were constructed by fusing cell membrane nanovesicles derived from genetically engineered cells, which stably express CCDC25, and the resulting cell membrane hybrid liposomes exhibited enhanced affinity for NETs in two different NET-associated disease models. Furthermore, after encapsulation of DNase I in the liposomes, the nanoformulation efficiently eliminated NETs and significantly suppressed the recruitment of neutrophils. Overall, we present a bionic nanocarrier that specifically targets NETs in vivo and successfully inhibits colorectal cancer liver metastases; importantly, this could be a promising therapeutic approach for the treatment of NET-associated diseases.


Assuntos
Neoplasias Colorretais , Armadilhas Extracelulares , Neoplasias Hepáticas , Humanos , Armadilhas Extracelulares/metabolismo , Lipossomos/metabolismo , Desoxirribonuclease I/metabolismo , Neoplasias Hepáticas/metabolismo , Membrana Celular , Neoplasias Colorretais/metabolismo
8.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902325

RESUMO

Although many studies have been exploring the mechanisms driving NETs formation, much less attention has been paid to the degradation and elimination of these structures. The NETs clearance and the effective removal of extracellular DNA, enzymatic proteins (neutrophil elastase, proteinase 3, myeloperoxidase) or histones are necessary to maintain tissue homeostasis, to prevent inflammation and to avoid the presentation of self-antigens. The persistence and overabundance of DNA fibers in the circulation and tissues may have dramatic consequences for a host leading to the development of various systemic and local damage. NETs are cleaved by a concerted action of extracellular and secreted deoxyribonucleases (DNases) followed by intracellular degradation by macrophages. NETs accumulation depends on the ability of DNase I and DNAse II to hydrolyze DNA. Furthermore, the macrophages actively engulf NETs and this event is facilitated by the preprocessing of NETs by DNase I. The purpose of this review is to present and discuss the current knowledge about the mechanisms of NETs degradation and its role in the pathogenesis of thrombosis, autoimmune diseases, cancer and severe infections, as well as to discuss the possibilities for potential therapeutic interventions. Several anti-NETs approaches had therapeutic effects in animal models of cancer and autoimmune diseases; nevertheless, the development of new drugs for patients needs further study for an effective development of clinical compounds that are able to target NETs.


Assuntos
Doenças Autoimunes , Armadilhas Extracelulares , Animais , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Desoxirribonuclease I/metabolismo , Doenças Autoimunes/metabolismo , DNA/metabolismo
9.
Mol Cell Biochem ; 478(4): 887-898, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36112238

RESUMO

Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1ß, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1ß and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.


Assuntos
Catequina , Neoplasias do Colo , Armadilhas Extracelulares , Humanos , Catequina/farmacologia , Armadilhas Extracelulares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neutrófilos/metabolismo , Chá , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia , Fator de Transcrição STAT3/metabolismo
10.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430491

RESUMO

Neutrophils are involved in the development of endometritis, but it remains unknown how neutrophils induce inflammation and tissue damage. Neutrophil extracellular traps (NETs) clear invading pathogens during infection but induce pyroptosis, leading to inflammation and tissue damage. Thus, our objective was to investigate whether NETs participate in bovine endometrial epithelial cell (BEEC) pyroptosis during endometritis. To confirm this, NETs and caspase-1/4; apoptosis-associated speck-like protein containing a caspase-recruitment domain(ASC); nod-like receptor protein-3 (NLRP3); and gasdermin D N-terminal (GSDMD-N), TNF-a, IL-1ß, IL-6, and IL-18 in endometrial tissue were detected. Pathological section and vaginal discharge smears were performed to visually determine endometritis in the uterus. BEECs were stimulated with NETs to induce pyroptosis, which was treated with DNase I against pyroptosis. Caspase-1/4, ASC, NLRP3, GSDMD-N, TNF-a, IL-1ß, IL-6, and IL-18 in BEECs were analyzed in endometrial tissue. The results showed that NET formation, as well as pyroptosis-related proteins and proinflammatory, cytokines were elevated in the endometrial tissue of cows with endometritis. Pathological sections and vaginal discharge smears showed increased neutrophils and plasma cells in the uterus, as well as tissue congestion. In BEECs, NETs increased the level of pyroptosis-related proteins and proinflammatory cytokines and were diminished by DNase I. In summary NETs participate BEEC pyroptosis during endometritis in dairy cows.


Assuntos
Endometrite , Armadilhas Extracelulares , Descarga Vaginal , Humanos , Feminino , Bovinos , Animais , Piroptose , Armadilhas Extracelulares/metabolismo , Endometrite/veterinária , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Epiteliais/metabolismo , Inflamação , Proteínas NLR/metabolismo , Citocinas/metabolismo , Desoxirribonuclease I/metabolismo
11.
J Neuroinflammation ; 19(1): 238, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183126

RESUMO

BACKGROUND: Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI. METHODS: Long bones, spleen, peripheral lymph nodes (pLNs), mesenteric lymph nodes (mLNs), liver, lungs, skin and blood were collected from mice with either moderate-level cortical impact (CCI) or sham on day 1, day 3 or day 7 after TBI. Bone marrow cells were isolated from the tibias and femurs of hind limb through flushing. Tissues were digested with Collagenase-D and DNase I. Skin biopsies were digested in the presence of liberase + DNase I. Single cell suspensions were made, red blood cells were lysed with Ammonium chloride (Stem Cell Technology) and subsequently filtered using a 70 µM nylon mesh. DC subsets of the tissues and DC progenitors of the BM were identified through 10-color flow cytometry-based immunophenotyping studies. Intracellular reactive oxygen species (ROS) were identified through H2DCFDA staining. RESULTS: Our studies identify that; (1) frequencies and absolute numbers of DCs in the spleen and BM are altered on day 3 and day 7 after TBI; (2) surface expression of key molecules involved in antigen presentation of DCs were affected on day 3 and day 7 after TBI; (3) distribution and functions of tissue-specific DC subsets of both circulatory and lymphatic systems were imbalanced following TBI; (4) early differentiation program of DCs, especially the commitment of hematopoietic stem cells to common DC progenitors (CDPs), were deregulated after TBI; and (5) intracellular ROS levels were reduced in DC progenitors and differentiated DCs on day 3 and day 7 after TBI. CONCLUSIONS: Our data demonstrate, for the first time, that TBI affects the distribution pattern of DCs and induces an imbalance among DC subsets in both lymphoid and non-lymphoid organs. In addition, the current study demonstrates that TBI results in reduced levels of ROS in DCs on day 3 and day 7 after TBI, which may explain altered DC differentiation paradigm following TBI. A deeper understanding on the molecular mechanisms that contribute to DC defects following TBI would be essential and beneficial in treating infections in patients with acute central nervous system (CNS) injuries, such as TBI, stroke and spinal cord injury.


Assuntos
Lesões Encefálicas Traumáticas , Células Dendríticas , Cloreto de Amônio/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Diferenciação Celular , Desoxirribonuclease I/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Nylons/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Biochem Biophys Res Commun ; 628: 49-56, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081278

RESUMO

The coagulation factor 9 gene (FIX) point mutation contributes to most hemophilia B cases, providing ideal gene correction models. Here we identified the frequent mutation G20519A (R226Q) in FIX, which resulted in many severe and moderate hemophilia B patients. This study aimed to investigate the effect of HDR and base editing in correcting FIX mutant. We first constructed HEK293 and liver-derived cell lines Huh7 cells stabling carrying mutated FIX containing G20519A (HEK293-FIXmut and Huh7-FIXmut). Then, CRISPR/Cas9-based homology-directed repair (HDR) and base editing were used for the correction of this mutated point. We used Cas9 nickase (nCas9) mediated HDR and the advanced base editor ABE8e to correct G20519A and then measured the concentration and activity of FIX. Furthermore, we used the star-shaped poly(lysine) gene nanocarriers to deliver the ABE8e correction systems into HEK293-FIXmut and Huh7-FIXmut stem cells to correct mutated FIX. As a result, we found that gRNAs directed inefficient HDR in correcting G20519A. The ABE8e corrected the mutation efficiently in both HEK293-FIXmut and Huh7-FIXmut stem cells. In addition, the star-shaped poly(lysine) carriers delivered non-viral vectors into stem cells efficiently. The nanocarriers-delivered ABE8e system corrected mutated FIX in stem cells, and the stem cells secreted active FIX in high concentration. In conclusion, our study provides a potential alternative for correcting mutated FIX in hemophilia B patients.


Assuntos
Edição de Genes , Hemofilia A , Hemofilia B , Aminoidrolases/genética , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/metabolismo , Edição de Genes/métodos , Células HEK293 , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Mutação , Mutação de Sentido Incorreto , Polilisina/química , Células-Tronco/metabolismo
13.
Elife ; 112022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069759

RESUMO

The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multicomponent editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair of site-specific nuclease-induced double-strand breaks. Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs improved editing efficiencies up to 13-fold compared with transfecting the PE components as plasmids or ribonucleoprotein particles. Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.


From muscles to nerves, our body is formed of many kinds of cells which can each respond slightly differently to the same harmful genetic changes. Understanding the exact relationship between mutations and cell-type specific function is essential to better grasp how conditions such as Parkinson's disease or amyotrophic lateral sclerosis progress and can be treated. Stem cells could be an important tool in that effort, as they can be directed to mature into many cell types in the laboratory. Yet it remains difficult to precisely introduce disease-relevant mutations in these cells. To remove this obstacle, Li et al. focused on prime editing, a cutting-edge 'search and replace' approach which can introduce new genetic information into a specific DNA sequence. However, it was unclear whether this technique could be used to efficiently create stem cell models of human diseases. A first set of experiments showed that prime editing is superior to conventional approaches when generating mutated genes in stem cells. Li et al. then further improved the efficiency and precision of the method by tweaking how prime editing components are delivered into the cells. The refined approach could be harnessed to quickly generate large numbers of stem cells carrying mutations associated with Parkinson's disease; crucially, prime editing could then also be used to revert a mutated gene back to its healthy form. The improved prime editing approach developed by Li et al. removes a major hurdle for scientists hoping to use stem cells to study genetic diseases. This could potentially help to unlock progress in how we understand and ultimately treat these conditions.


Assuntos
Células-Tronco Pluripotentes , RNA Guia de Cinetoplastídeos , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Edição de Genes/métodos , Células-Tronco Pluripotentes/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , RNA Mensageiro/metabolismo , DNA Polimerase Dirigida por RNA , Ribonucleoproteínas/metabolismo , Sistemas CRISPR-Cas
14.
PLoS Genet ; 18(7): e1010262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793278

RESUMO

Urinary cell-free DNA (ucfDNA) is a potential biomarker for bladder cancer detection. However, the biological characteristics of ucfDNA are not well understood. We explored the roles of deoxyribonuclease 1 (DNASE1) and deoxyribonuclease 1-like 3 (DNASE1L3) in the fragmentation of ucfDNA using mouse models. The deletion of Dnase1 in mice (Dnase1-/-) caused aberrations in ucfDNA fragmentation, including a 24-fold increase in DNA concentration, and a 3-fold enrichment of long DNA molecules, with a relative decrease of fragments with thymine ends and reduction of jaggedness (i.e., the presence of single-stranded protruding ends). In contrast, such changes were not observed in mice with Dnase1l3 deletion (Dnase1l3-/-). These results suggested that DNASE1 was an important nuclease contributing to the ucfDNA fragmentation. Western blot analysis revealed that the concentration of DNASE1 protein was higher in urine than DNASE1L3. The native-polyacrylamide gel electrophoresis zymogram showed that DNASE1 activity in urine was higher than that in plasma. Furthermore, the proportion of ucfDNA fragment ends within DNase I hypersensitive sites (DHSs) was significantly increased in Dnase1-deficient mice. In humans, patients with bladder cancer had lower proportions of ucfDNA fragment ends within the DHSs when compared with participants without bladder cancer. The area under the curve (AUC) for differentiating patients with and without bladder cancer was 0.83, suggesting the analysis of ucfDNA fragmentation in the DHSs may have potential for bladder cancer detection. This work revealed the intrinsic links between the nucleases in urine and ucfDNA fragmentomics.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Bexiga Urinária , Animais , Ácidos Nucleicos Livres/genética , DNA/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/genética , Endonucleases , Humanos , Camundongos , Camundongos Knockout , Neoplasias da Bexiga Urinária/genética
15.
J Hazard Mater ; 439: 129502, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35868089

RESUMO

The widespread use of plastics and the rapid development of nanotechnology bring convenience to our lives while also increasing the environmental burden and increasing the risk of exposure of organisms to nanoparticles (NPs). While recent studies have revealed an association between nanoparticles and liver injury, the intrinsic mechanism of NP exposure-induced liver damage remains to be explored. Here, we found that polystyrene nanoparticle (PSNP) exposure resulted in a significant increase in local neutrophil infiltration and neutrophil extracellular trap (NET) formation in the liver. Analysis of a coculture system of PBNs and AML12 cells revealed that PSNP-induced NET formation positively correlates with the reactive oxygen species (ROS)-NLRP3 axis. Inhibition of ROS and genetic and pharmacological inhibition of NLRP3 in AML12 can both alleviate PSNP-induced NET formation. In turn, exposure of mice to deoxyribonuclease I (DNase Ⅰ)-coated PSNPs disassembled NET in vivo, neutrophil infiltration in the liver was reduced, the ROS-NLRP3 axis was inhibited, and the expression of cytokines was markedly decreased. Collectively, our work reveals a mechanism of NET formation in PSNP exposure-induced liver inflammation and highlights the possible role of DNase Ⅰ as a key enzyme in degrading NET and alleviating liver inflammation.


Assuntos
Armadilhas Extracelulares , Nanopartículas , Animais , DNA , Desoxirribonuclease I/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/toxicidade , Neutrófilos , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio/metabolismo
16.
Bioengineered ; 13(5): 12211-12223, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577351

RESUMO

Mitochondrial transcription factor B2 (TFB2M) is a protein modulating both mitochondrial DNA (mtDNA) transcription and compacting. In this study, we explored the expression profile of TFB2M in ovarian cancer, its association with infiltration of tumor-associated macrophages (TAMs), and its influence on macrophage polarization. Serial sections of ovarian cancer tissue arrays were stained to detect TFB2M and CD163 expression. Epithelial ovarian cancer cell line OVISE and CAOV4 were used to assess the influence of TFB2M on IL-6 expression. THP-1 cells were utilized as an in vitro model for macrophage migration and polarization. Results showed that higher TFB2M expression is associated with poor survival in ovarian cancer patients. IHC staining confirmed a moderately positive correlation between TFB2M expression and the infiltration of CD163-positive cells in 68 primary ovarian cancer cases. TFB2M overexpression was associated with increased mtDNA outside the mitochondria and elevated IL-6 expression in ovarian cancer cells. When cytosolic mtDNA was selectively inhibited by DNase I, TFB2M-induced IL-6 upregulation was canceled. TFB2M overexpression could activate the nuclear factor kappa-B (NF-κB) signaling pathway via promoting nucleus entry of p65 and p-p65, which was abrogated by inhibiting cytosolic mtDNA, TLR9, or NF-κB signaling pathway. Conditioned medium from OIVSE cells with TFB2M overexpression could induce macrophage migration and M2 polarization. However, these inducing effects were abrogated by DNase I, TLR9 inhibitor, and anti-IL-6 R pretreatment. In conclusion, this study showed a novel role of TFB2M in the immunosuppressive tumor microenvironment. It promotes M2 macrophage infiltration via a cytosolic mtDNA/TLR9/NF-κB/IL-6 pathway in ovarian cancer.


Assuntos
DNA Mitocondrial , Interleucina-6 , Macrófagos , Metiltransferases , Proteínas Mitocondriais , Neoplasias Ovarianas , Fatores de Transcrição , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , DNA Mitocondrial/metabolismo , Desoxirribonuclease I/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptor Toll-Like 9/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética
17.
PLoS Biol ; 20(1): e3001527, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089911

RESUMO

CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids.


Assuntos
DNA/genética , Desoxirribonuclease I/metabolismo , Loci Gênicos , Organoides/metabolismo , Reparo de DNA por Recombinação , Coloração e Rotulagem/métodos , Alelos , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Colo/citologia , Colo/metabolismo , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Desoxirribonuclease I/genética , Eletroporação/métodos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Técnicas de Introdução de Genes , Vetores Genéticos , Genoma Humano , Heterozigoto , Humanos , Organoides/citologia
18.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140756, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026466

RESUMO

Nicking endonuclease Nt.BspD6I (Nt.BspD6I) is the large subunit of the heterodimeric restriction endonuclease R.BspD6I. It recognizes the short specific DNA sequence 5´'- GAGTC and cleaves only the top strand in dsDNA at a distance of four nucleotides downstream the recognition site toward the 3´'-terminus. A mechanism of interaction of this protein with DNA is still unknown. Here we report the crystal structure of Cysteine-free Nt.BspD6I, with four cysteine residues (11, 160, 508, 578) substituted by serine, which was determined with a resolution of 1.93 Å. A comparative structural analysis showed that the substitution of cysteine residues induced marked conformational changes in the N-terminal recognition and the C-terminal cleavage domains. As a result of this changes were formed three new hydrogen bonds and the electrostatic field in these regions changed compared with wild type Nt.BspD6I. The substitution of cysteine residues did not alter the nicking function of Cysteine-free Nt.BspD6I but caused change in the activity of Cysteine-free heterodimeric restriction endonuclease R.BspD6I due to a change in the interaction between its large and small subunits. The results obtained contribute to the identification of factors influencing the interactions of subunits in the heterodimeric restriction enzyme R.BspD6I.


Assuntos
Cisteína/química , Desoxirribonuclease I/química , Endonucleases/química , Serina/química , Bacillus/enzimologia , Sítios de Ligação , Cristalografia por Raios X/métodos , DNA/química , DNA/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Dimerização , Endonucleases/genética , Endonucleases/metabolismo , Ligação de Hidrogênio , Hidrólise , Estrutura Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas/química
19.
Mikrochim Acta ; 189(2): 75, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35083578

RESUMO

Rapid and selective sensing of KRAS gene mutation which plays a crucial role in the development of colorectal, pancreatic, and lung cancers is of great significance in the early diagnosis of cancers. In the current study, we developed a simple electrochemical biosensor by differential pulse voltammetry technique for the specific detection of KRAS mutation that uses the mismatch-specific cleavage activity of T7-Endonuclease I (T7EI) coupled with horseradish peroxidase (HRP) to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in the presence of hydrogen peroxide (H2O2). In addition, we synthesized the nanocomposite composed of multi-walled carbon nanotube/chitosan-ionic liquid/gold nanoparticles (MWCNT/Chit-IL/AuNPs) on screen-printed carbon electrode surface to increase the electrode surface area and electrochemical signal. In principle, T7E1 enzyme recognized and cleaved the mismatched site formed by the presence of KRAS gene mutation, removing 5'-biotin of capture probes and subsequently reducing the differential pulse voltammetry signal compared to wild-type KRAS gene. With this proposed strategy, a limit of detection of 11.89 fM was achieved with a broad linear relationship from 100 fM to 1 µM and discriminated 0.1% of mutant genes from the wild-type target genes. This confirms that the developed biosensor is a potential platform for the detection of mutations in early disease diagnosis.


Assuntos
Desoxirribonuclease I/metabolismo , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Peroxidase do Rábano Silvestre/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias da Mama , Linhagem Celular Tumoral , Quitosana , Neoplasias do Colo , Desoxirribonuclease I/genética , Eletrodos , Feminino , Regulação Neoplásica da Expressão Gênica , Ouro/química , Humanos , Líquidos Iônicos , Nanopartículas Metálicas/química , Mutação , Nanotubos de Carbono , Transdução de Sinais
20.
PLoS One ; 16(12): e0261410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941914

RESUMO

BACKGROUND: Patients with cystic fibrosis (CF) need costly medical care and adequate therapy with expensive medicinal products. Tigerase® is the first biosimilar of dornase alfa, developed by the lead Russian biotechnology company GENERIUM. The aim of the manuscript to present post hoc sub-analysis of patients' data with cystic fibrosis and severe pulmonary impairment of a larger comparative study (phase III open label, prospective, multi-centre, randomized study (NCT04468100)) of a generic version of recombinant human DNase Tigerase® to the only comparable drug, Pulmozyme®. METHODS: In the analyses included subgroup of 46 severe pulmonary impairment patients with baseline FEV1 level 40-60% of predicted (23 patients in each treatment group) out of 100 patients registered in the study phase III open label, prospective, multi-center, randomized study (NCT04468100), and compared efficacy endpoints (FEV1, FVC, number and time of exacerbations, body weight, St.George's Respiratory Questionnaire) as well as safety parameters (AEs, SAEs, anti-drug antibody) within 24 treatment weeks. RESULTS: All outcomes were comparable among the studied groups. In the efficacy dataset, the similar mean FEV1 and mean FVC changes for 24 weeks of both treatment groups were observed. The groups were also comparable in safety, all the secondary efficacy parameters and immunogenicity. CONCLUSIONS: The findings from this study support the clinical Tigerase® biosimilarity to Pulmozyme® administered in CF patients with severe impairment of pulmonary function.


Assuntos
Medicamentos Biossimilares/uso terapêutico , Fibrose Cística/tratamento farmacológico , Desoxirribonuclease I/uso terapêutico , Desoxirribonucleases/uso terapêutico , Adulto , Medicamentos Biossimilares/síntese química , Fibrose Cística/complicações , Fibrose Cística/fisiopatologia , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Expectorantes/uso terapêutico , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Pneumopatias/tratamento farmacológico , Pneumopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Depuração Mucociliar , Estudos Prospectivos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA